FeCrAl 125
X15Ю5 – Coil | X15Ю5 – Plates | X15Ю5 – Wires | X15Ю5 – Strip |
FeCrAl 125 is a ferritic iron-chromium-aluminium alloy (Cr content is around 15%) with high resistivity suitable for temperature applications up to 1100°C. FeCrAl 125 is characterised by: high resistivity, good thermal conductivity, low elongation at high temperature. FeCrAl 125 is particularly specified for heating elements operating in the open, for breaking resistors, rheostats, tubes quartz, emergent heaters, heating cables, etc.
Condition of Supply
- Bright Annealed;
- Oxidised (Blue and Golden);
- As Drawn
X15Ю5 – Oxidized Surface | X15Ю5 – Bright Surface |
Advantages of FeCrAl compared with NiCr:
- A higher resistivity (until 1.44 ohm mm²/m).
- A temperature of use higher in the air (1300°C against 1200 °C for Resistohm 80).
- A higher charge rate.
- A good resistance to sulphurous and carbonaceous atmospheres.
- A lower density which means: with an equal weight of material a more important number of elements.
Trade Name | W.N. | DIN | UNS | GOST |
FeCrAl 125 | 1.4725 | CrAl 14 4 | K91670 | X15Ю5 |
Fields of application
Name | Typical application |
FeCrAl 125 | Heating elements operating out in the open, tubes quartz, emergent heaters, rheostats and in general where the temperature on the element is under 1100°C |
Type of material
Heating conductors/resistance alloys
Application area(s)
Electronics and electrical engineering
Product form(s)
. Wire
. Sheets
. Plates
. Coil
. Strip
Chemical Composition
% | C | Si | Mn | Fe | Cr | Ni | Al |
Min | – | – | – | Bal. | 14.00 | – | 3.50 |
Max | 0.08 | 0.70 | 0.50 | 16.00 | 0.40 | 5.00 |
Mechanical Properties
Wire Size, mm | Yield Strength, Rp0.2(MPa) | Tensile Strength, Rm(MPa) | Hardness, HV | Elongation, A(%) |
1.00 | 500 | 700 | 200 | ≥18 |
Physical Properties
Density, g/cm3 | 7.30 | Creep strength, MPA Rp 1.0/103h | 600 °C | 16.00 |
Electrical resistivity at 20°C, Ω | 1.25 | 800 °C | 4.00 | |
Thermal Conductivity at 20°C, W/mk | 14.50 | 1000 °C | 0.80 | |
Melting point, °C | 1500 | Magnetic properties | magnetic | |
Max Operating temperature, °C | 1100 |
Temperature factor of resistivity
Temperature, °C | 20 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
Kt | 1.000 | 1.005 | 1.013 | 1.025 | 1.042 | 1.063 | 1.090 | 1.112 | 1.130 | 1.135 | 1.140 |
Coefficient of liner thermal expansion
Temperature, °C | 20 | 200 | 400 | 500 | 600 | 800 | 1000 |
a x 10-6 /K | – | 11.00 | 12.00 | – | 13.00 | 14.00 | 15.00 |
Material Information
Material | Unalloyed steel | C steel soft | C steel | C steel | Tool steel | CrMo steel | Cr- steel | CrNi steel | CrNiMo steel | Heat-resist. Steel | Heat-resist. Steel | Copper | Brass | Bronze | Nickel | Al alloy | Aluminium | |
Material number | 1.0338 | 1.1248 | 1.1274 | 1.2003 | 1.2379 | 1.4031Mo | 1.4034 (1.2083) | 1.431 | 1.4404 | 1.4767 | 1.4828 | 2.007 | 2.0321 | 2.102 | 2.4068 | 3.0205 | ||
DIN/EN AISI UNS | DC04 1008 A 620 | C75S lC+MA 1075 G 10750 | C100S+QT 1095 G 10950 | 75Cr1+QT 1075 G 10780 | X155CrVMo12-1 D2 | X39CrMo14-1 Etwa 420 | X46Cr13 420 S 42000 | X12CrNi17-7 301 S 30100 | X2CrNiMo17-12-2 316l S 31603 | X8CrAl20-5 | X15CrNiSi20-12 309 S 30900 | SE-Cu58/CW021A C 10300 | CuZn 37 C 27200 | CuSn6/CW452K C 51900 | lC-Ni 99.2% N 02201 | EN-AW 8079 | EN-AW 1200 A91200 | |
Designation | ||||||||||||||||||
Dimensions | Widths Thicknesses Width tolerance Thickness tole-rance | 150+305 0.025-1.00mm DIN EN 10 140 | 300-305 mm 0.20-3.00mm | 6 – 305 mm 0.02-2.00 mm B 2 T 3 | 350 + 610 mm 0.60 – 5.03 mm -T 3 | ca. 630x1000mm 2.3-5.5 mm -0/+0.5mm | 70-310 0.076-1.50 EN 9445 T1-T3 | 320 mm 1.00 – 3.00 mm EN 10258 R T 3 | 10 – 1000 mm 0.003 – 3.00 mm EN 10258 R T 3 (some EN10258) | Approx. 300 mm 0.05 – 0.50 EN 10258 R EN 10258 (some T3) | Approx. 300 mm 0.03 – 0.20 mm EN 10 258 | Approx. 300 mm 0.15 – 0.30 mm EN 10 258 | 150 + 305 mm 0.01 – 0.50 mm +/- 10% | 150 + 305 mm 0.01 – 1.00 mm DIN 1791 T 3 | 150 + 305 mm 0.05 – 0.30 mm | 150 + 320 mm 0.01 – 0.30 mm | 150 mm 0.025 mm | 150 mm 0.05 – 0.20 mm |
Surface | Bright | Bright | White-polished | Bright | Scaled | White-polished | Ground | 2H | 2R/2H | Bright | Bright | Bright | Bright | Bright | Bright | Bright | Bright | |
Edge form | Cut | Cut | Cut (in a width of 12.7 mm. rounded from a thickness of 0.25 mm) | Cut | Rolled edge | Cut | Cut | Cut | Cut | Cut | Cut | Cut | Cut | Cut | Cut | Cut | Cut | |
Straightness | Normal | Normal | Normal | Normal | Normal | SR | Normal | DIN 1791 | ||||||||||
Evenness | Normal | Extra precise | Extra precise | 0.2% of the strip width | P2/P3 | Extra precise | Wave height. max. 1 mm | DIN | DIN 1791 | |||||||||
Rolled condition | Hard-rolled | Hard-rolled | Hardened and tempered (H+T) | Hardened and tempered (H+T) | Hardened and tempered (H+T) | Hardened and tempered (H+T) | Hardened and tempered (H+T) | Cold-rolled – spring-tempered | Cold-rolled. an-nealed or spring-tempered | Hard-rolled | Annealed | Hard-rolled | Spring-tempered | Spring-tempered | Hard or semi-hard | Hard-rolled | Hard-rolled | |
Tensile strength/ hardness | >590 N/mm² | 490-650 N/mm² | See tensile strengths table | HRC 48-50 | HRC 59-61 | 1700-1950 N/ mm² | HRC 50-54 | See tensile strengths table | 540-750 N/mm² (Annealed) >1100 N/mm² (Hard) | Approx.1000 N/ mm² | 540 – 750 N/mm² | >360 N/mm² | See tensile strengths table | HV 160-190 | Approx. 500-1000 N/mm² | >180 N/mm² | > 150 N/mm² | |
Material – composition | C: | max.0.08% | max. 0.65-0.80% | max. 1.05% | 0.70-0.80% | 1.50-1.60% | Approx. 0.39% | 0.40 – 0.50% | max. 0.15% | max. 0.03% | max. 0.05% | max. 0.20% | max. 0.02% | |||||
Si: | 0.15-0.30% | 0.15-0.30% | 0.25-0.50% | 0.35-0.40% | max. 0.40% | 0.30% | max. 1.5% | max. 1.0% | max. 0.50% | 1.5-2.5% | – | max. 0.1% | 0.05-0.3% | Si+Fe max. 1% | ||||
Mn: | max. 0.4% | 0.30-0.45% | 0.30-0.45% | 0.60-0.80% | 0.30-0.60% | Approx. 0.60% | 0.35% | max. 2.0% | max. 2.0% | max. 2.0% | max. 0.3% | max. 0.05% | ||||||
P: | max. 0.03% | max. 0.02% | max. 0.02% | max. 0.03 % | max. 0.03% | max. 0.025% | max. 0.045% | max. 0.045% | max. 0.045% | 0.002-0.007% | 0.01-0.4% | |||||||
S: | max. 0.03% | max. 0.02% | max. 0.02% | max. 0.03% | max 0.02% | max. 0.01% | max. 0.03% | max. 0.03% | max. 0.03% | max. 0.005% | ||||||||
Cr: | max. 0.40% | max. 0.40% | 0.30-0.40% | 11-12% | Approx. 13.5% | 13.50% | 16-18% | 16.50-18.50% | 19.0 – 22.0 % | 19.0-21.0% | ||||||||
Ni: | – | 7-9% | 10.0-13.0% | max. 0.30% | 11.0-13.0% | max. 0.2% | > 99.2% | |||||||||||
– | ||||||||||||||||||
Mo: | 0.7-0.9% | ca. 1% | – | max. 0.80% | 2.0-2.5% | |||||||||||||
Al: | – | 5.50-6.50% | balance | >99.0% | ||||||||||||||
Cu: | – | >99.95% | 62-64% | balance | max. 0.25% | max. 0.05% | max. 0.05% | |||||||||||
Pb: | – | max. 0.005% | max. 0.1% | max. 0.02% | ||||||||||||||
Sn: | – | 5.5-7.0% | ||||||||||||||||
Zn: | – | balance | max. 0.2% | max.0.1% | max. 0.1% | |||||||||||||
Fe: | balance | balance | balance | balance | balance | balance | balance | balance | balance | balance | balance | max. 0.1% | max. 0.4% | 0.7-1.3% | Si+Fe max. 1% | |||
N: | max. 0.01% | |||||||||||||||||
Other: | V: 0.7-0.9% | – | Traces of Zr+Y+Hf | max. 0.03% | max. 0.2% | Ti: 0.01-0.1% | max. 0.15% | max. 0.15% |
Unalloyed, hard-rolled steel, mat. no. 1.0338 (DC04)
Unalloyed steels are very cost-effective materials for simple parts that don’t need to be corrosion-resistant and are not subjected to mechanical strains. With a tensile strength of at least 590 N/mm² (+C590), the products stocked at h+s are easy to blank but can only be dished or deep-drawn to a limited extent. Due to thickness tolerances according to EN 10 140, this material is only suitable for shim parts that do not have high precision requirements.
Unhardened, hardenable spring steel strip, mat. no. 1.1248
With a carbon content of 0.75%, material 1.1248 is frequently used as an alloy for springs. In an unhardened state, this steel is very easy to stamp and form; however, it must then be hardened to achieve a high tensile strength and hardness.
Hardened spring steel strip, mat. no. 1.1274
With a carbon content of over 1%, this material is very well suited for feeler gauge strips and precision foils as well as highly stressed springs that are not subject to any corrosion requirements. In particularly igh-quality designs, as the only carbon steel, 1.1274 is suitable for shock absorbers and flapper valves.
Hardened tool steel, mat. no. 1.2003
The addition of a small amount of chromium gives this material high wear-resistance and a better through-hardening in large cross-sections. With a Rockwell hardness of 47–51 HRC, this material is also suitable for smaller tools.
Hardened, rust-resistant special spring steel strip 1.4031 (AISI 420)
As a result of the alloying with 13% chrome and 1% molybdenum, this alloy is corrosion-resistant against damp air, water vapour and water, but is not sufficiently resistant to chloride ions and acids. The advantages of this steel lie in its good wear-resistance and minimum internal tensions. With a tensile strength of 1700–1950 N/mm2, this material is ideal for springs, gauges, tools and knives. In a particularly high-quality design, this material is also suitable for flapper valves.
Hardened, stainless tool steel, mat. no. 1.4034 (1.2083) As a result of the alloying with 13% chromium, this martensitic chrome steel is corrosion-resistant against damp air, water vapour and water, but is not sufficiently resistant to chloride ions and acids. This material has a lower corrosion-resistance compared to 1.4310. The advantages of this steel lie in its good wear-resistance and minimum internal tensions. With a Rockwell hardness of 50–54 HRc, this material is ideal for gauges, tools and machine cutting tools in the food industry and scalpels. Materials 1.4034 and 1.2083 are only marginally different in terms of carbon content.
Cold-rolled, stainless spring steel strip, mat. no. 1.4310
As a result of the alloying with 17% chrome and 7% nickel, this material is particularly corrosion-resistant. Cold-rolling gives this material a high tensile strength. It has a significantly higher strength than 1.4301. As a result, material 1.4310 is very well suited for stainless-steel precision gauge strips and precision foils. This material is only weakly magnetic and therefore cannot be held in place on magnetic clamping plates during grinding. When chamfering or bending material 1.4310, please be aware that folds should always run transversely to the roll direction. The roll direction must also be observed when using the material as a flat spring.
Stainless precision steel strip 1.4404
Due to its higher content of nickel and molybdenum, this material is significantly more resistant to corrosion than 1.4301 or 1.4310. In an annealed state, this material has very good deep-drawing properties due to the high nickel content. In a hard-rolled state, this material can be used for springs in corrosive environments. Similarly to 1.4310, 1.4404 becomes slightly magnetisable as a result of hard-rolling; however, due to its higher nickel content, its magnetism is less than in 1.4310.
Heat-resistant ferritic chrome steel, mat. no. 1.4767
By adding approximately 6% aluminium and traces of yttrium and hafnium, this ferritic steel is incredibly heat-resistant up to 1200°C. We stock this material in a hard-rolled state but it becomes soft during the first heating. This alloy is used for heating conductors in hobs, sensors and in flue gas cleaning. Ferritic steels can be magnetised.
Heat-resistant austenitic steel, mat. no. 1.4828
This material is heat-resistant to 1000°C as a result of its high chromium, nickel and silicon content. We stock this material in an annealed state.
Hard-rolled copper strip, mat. no. 2.0070 (SE-Cu58)
With a copper content of at least 99.95% and low oxygen and phosphorous content, the SE-Cu58 alloy is better quality than the generally used copper types, E-Cu (UNS C11000) and SF-Cu (UNS C12200). This material is used in general electrical engineering for cable straps and connectors, transformer coils, semiconductors and sheet metal parts (e.g. for seals).
Hard-rolled brass strip, mat. no. 2.0321
Composed of 63% copper and 37% zinc, this material is the standard product for spring-tempered, rolled brass. This material is not magnetic. Observe the roll direction when using the brass as a flat spring or when chamfering or bending brass.
Hard-rolled bronze strip, mat. no. 2.1020 (CuSn6)
With zinc content of 6%, the bronze alloy CuSn6 is the most frequently used type of bronze. Examples of typical applications are connectors, contact pins and general sheet metal parts and springs that require good electrical conductivity. Unlike brass, bronze can also be used in vacuum technology.
Pure nickel, mat. no. 2.4068 (Ni 99.2)
Pure nickel is very corrosion-resistant in alkaline media in particular, even at temperatures above 300°C. It is used in the chemical apparatus construction and pharmaceuticals industries. As nickel is resistant to chemical substances, the absolute purity of the product being processed is ensured. In thicknesses from 0.01 to 0.05 mm, nickel is available in a hard-rolled state; in thicknesses from 0.10 to 0.30 mm, it is available in a semi-hard state
Aluminium alloy EN-AW 8079
Due to its low specific weight and good formability, aluminium can be used for a wide range of applications. EN-AW contains iron and silicon, giving it a higher tensile strength. This allow is therefore used for aluminium foils of a thickness of up to around 0.05 mm.
Pure aluminium, mat. no. 3.0502 (Al 99.0%)
Due to its relatively good thermal conductivity, pure aluminium is also used for heat exchangers (however, alloys 3003 or 6063 should be used in soldered heat exchangers). As a result of its high electrical conductivity, aluminium can also be used in the electronics industry and, thanks to its high reflective properties, in lamp reflectors too.
Technical
Fields of application
Name | Typical application |
FeCrAl 125 | Heating elements operating out in the open, tubes quartz, emergent heaters, rheostats and in general where the temperature on the element is under 1100°C |
FeCrAl 135 | Hot plates, irons, electric furnaces, cigarette lighters and fuel burners elements,resistor applications and heavy relay switches, etc. Good for continuous element operating temperatures up to 1250°C. |
FeCrAl 140 | Heating elements of industrial furnaces where a high head rate is necessary. A very long life time of the elements operating at high temperatures up to 1300°C. |
FeCrAl 145 | Electric furnaces for ceramic, chemical and metallurgic industries, and for all applications where it is necessary to apply very high temperature of use. Long-life for continuous operating temperatures up to 1400°C. |
FeCrAl Y | High-temperature industrial furnaces with an element temperature up to 1350°C. Electric heating appliances, ceran hotplates, tube elements, radiant heaters, fans, toasters, burner heads and covers. |
FeCrAl H | High temperature industrial and laboratory furnaces, furnaces for electronic industries, diffusion furnaces, resistance elements, radiant heaters, ceramic kilns, etc. Operating temperatures is under 1400°C. |
AUSTENITIC ALLOYS (NiCr) Nickel-Chromium
Typical Applications:
Name | Typical application |
Ni80Cr20 | Heating batteries, electric cooking equipment, precision resistors. |
Ni70Cr30 | Industrial furnaces (up to 1250°C) with alternating oxidizing/ reducing atmosphere, precision resistors |
Ni60Cr15 | Heating elements operating at a temperature up to 1150°C, which include all sorts of heating elements and resistances (toasters elements, potentiometer resistances and other household and industrial appliances). |
Ni40Cr20 | Heating appliances (up to 1050°C), furnaces in carburising or semi-reducing atmosphere, heating elements of cooking equipment. |
Specification
Grade Designation and Chemical Composition for Nickel Alloy Resistance Wire | |||||||||
Material Designation | Nearest Fit | Ni | Cu | Cr | Fe | Mn | Al | ||
Symbol | Number | UNS | Other Name | ||||||
Nickel Chrome | |||||||||
NiCr8020 | 2.4869 | NO6003 | NiCr80/20 | 80 | 20 | ||||
NiCr6015 | 2.4867 | NO6004 | NiCr60/16 | 60 | 15 | 25 | |||
NiCr3718 | NiCr37/18 | 37 | 18 | 45 | |||||
Copper Nickel | |||||||||
CuNi44 | 2.0842 | N04401 | Hecnum | 44 | 55 | 1 | |||
CuNi30Mn | 2.089 | – | CuNi30 | 30 | 67 | 3 | |||
CuNi23Mn | 2.0881 | – | CuNi23 | 23 | 75 | 2 | |||
CuNi10 | 2.0811 | – | Alloy 90 | 10 | 90 | ||||
CuNi6 | 2.0807 | C70300 | Alloy 60 | 6 | 94 | ||||
CuNi2 | 2.0802 | C70200 | Alloy 30 | 2 | 98 | ||||
Iron Chrome Aluminium | |||||||||
CrAl20-5 | 1.4767 | K92400 | ICA135 | 20 | 75 | 5 | |||
CrAl25-5 | 1.4765 | K92500 | ICA145 | 23 | 71 | 6 |
Physical Properties for Nickel Alloy Resistance Wire | |||||||||
Material Designation | Nearest Fit | Resistivity µOhms/cm | Density G/cm3 | Coefficient of Linear Expansion | Thermal Conductivity | ||||
Symbol | Number | UNS | Other Name | µm/m.°C | Temp.°C | W/m.K | |||
Nickel Chrome | |||||||||
NiCr8020 | 2.4869 | NO6003 | NiCr80/20 | 108 | 8.35 | 17.5 | 20-1000 | 15 | |
NiCr6015 | 2.4867 | NO6004 | NiCr60/16 | 112 | 8.16 | 17.5 | 20-1000 | 13.3 | |
NiCr3718 | NiCr37/18 | 105 | 7.95 | 18 | 20-1000 | 13 | |||
Copper Nickel | |||||||||
CuNi44 | 2.0842 | N04401 | Hecnum | 49 | 8.9 | 14 | 20-1000 | 21.1 | |
CuNi30Mn | 2.089 | – | CuNi30 | 37 | 8.9 | 15.7 | 20-1000 | 29 | |
CuNi23Mn | 2.0881 | – | CuNi23 | 30 | 8.9 | 15.7 | 20-1000 | 35 | |
CuNi10 | 2.0811 | – | Alloy 90 | 15 | 8.9 | 16 | 20-1000 | 60 | |
CuNi6 | 2.0807 | C70300 | Alloy 60 | 10 | 8.9 | 16.2 | 20-1000 | 90 | |
CuNi2 | 2.0802 | C70200 | Alloy 30 | 5 | 8.9 | 14.4 | 20-1000 | 160 | |
Iron Chrome Aluminium | |||||||||
CrAl20-5 | 1.4767 | K92400 | ICA135 | 135 | 7.25 | 14 | 20-1000 | 16.5 | |
CrAl25-5 | 1.4765 | K92500 | ICA145 | 145 | 7.1 | 15.1 | 20-1000 | 16 |
Service Properties and Application for Nickel Alloy Resisitance Wire | |||||
Material Designation | Nearest Fit | Service Properties | Applications | ||
Symbol | Number | UNS | Other Name | ||
NICKEL CHROME | |||||
NiCr8020 | 2.4869 | NO6003 | NiCr80/20 | Contains long life additions making it eminently suitable for applications subject to frequent switching and wide temperature fluctuations. Can be used at operating temperatures up to 1150 °C. | Control resistors, high temperature furnaces, soldering irons. |
NiCr6015 | 2.4867 | NO6004 | NiCr60/16 | A Ni/Cr alloy with balance mainly Iron, with long life additions. It is suitable for use up to 1100 °C, but the higher coefficient of resistance makes it suitable for less exacting applications than 80/20. | Electric heaters, heavy duty resistors, electric furnaces. |
NiCr3718 | NiCr37/18 | Balance mainly Iron. Suitable for continous operation up to 1050°C, in furnaces with atmospheres which may otherwise cause dry corrosion for higher nickel content materials. | Electric heaters, electric furnaces (with atmospheres). | ||
COPPER NICKEL | |||||
CuNi44 | 2.0842 | N04401 | Hecnum | Medium resistivity combined with low temperature coefficient of resistance makes it ideal for resistors. It is suitable for temperatures up to 400°C. | Thermocouples, resistors, heating wires and cables. |
CuNi30Mn | 2.089 | – | CuNi30 | High resistance to oxidation and chemical corrosion. Maximum working temperature is 500°C | Resistors, heating cables and detectors for fuses. |
CuNi23Mn | 2.0881 | – | CuNi23 | As above | Resistors, heating cords and mats. |
CuNi10 | 2.0811 | – | Alloy 90 | High resistance to oxidation and chemical corrosion. Maximum working temperature is 400°C | Low value resistors, heating wires and mats. |
CuNi6 | 2.0807 | C70300 | Alloy 60 | Characterised by low resistivity. High resistance to oxidation and corrosion. Maximum operating temperature is 300°C | Tube electrical welding fittings, ribbons used for heating of bimetals. |
CuNi2 | 2.0802 | C70200 | Alloy 30 | As above. | As above |
IRON CHROME ALUMINIUM | |||||
CrAl20-5 | 1.4767 | K92400 | ICA135 | A ferromagnetic alloy which can be used at temperatures up to 1300°C. Should be operated in dry surroundings to avoid corrosion. Can become embrittled at high temperatures. | Heating elements of high temperature furnaces and radiant heaters. |
CrAl25-5 | 1.4765 | K92500 | ICA145 | Can be used in operating conditions up to 1350°C, although can become embrittled. | Heating elements of high temperature furnaces and radiant heaters. |